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A simple model for a set of interacting idealized neurons with small-world structure is introduced. The basic
elements of the model are endowed with the main features of a neuron function. We find that our model
displays power-law behavior of avalanche sizes and generates long-range temporal correlations and 1/f noise.
More importantly, we find there are different avalanche dynamical behaviors for differentf, the density of
short paths in the network.
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I. INTRODUCTION

In 1987, Bak, Tang, and Wiesenfeld introduced the con-
cept of “self-organized criticality”sSOCd f1g. It is shown that
extended nonequilibrium systems can organize into a scale-
invariant critical state spontaneously, without fine tuning of a
control parameter. This critical state is characterized by a
power-law distribution of avalanche sizes, which is regarded
as a “fingerprint” for SOC.

The brain, which possesses about 1010–1012 neurons, is
one of the most complex systems. Now evidence for some
aspects of scale invariance has been found in the central
nervous systemf2g. Some scientists stated that the brain
might be operating at, or near, a critical statef3g. The mecha-
nism of the SOC process in the brain is an interesting re-
search area.

It is well known that network connectivity in the cortex
and other brain regions is mainly local, with relatively sparse
long-distance projections. From a neuron-biological point of
view, unlike for fully connected artificial neural networks,
plausible associative memories must have sparse connectiv-
ity, reflecting the situation in the cortex and hippocampus
f4g. Recently, Watts and Strogatzf5g studied a class of net-
works that can be tuned from regular to random states by
varying a single parameter. They called this class of net-
works “small-world” networks. Small-world networks can be
highly clustered, like a regular lattice, yet have a small char-
acteristic path length, like random graphs. The key role of a
few long-range connectionssshortcutsd in the small-world
network is to decrease the length of the characteristic path. It
suggests that small-world phenomena might be common in
sparse networks with many nodes. Indeed, it has been proven
that the nervous system of the nematode wormC. elegans
shows small-world propertiesf5g. Small-world networks of
coupled phase oscillators are optimal for producing synchro-
nization. The results may be relevant to the observed syn-

chronization of widely separated neurons in the cat visual
cortex f6g. Watts and Strogatz proposed that the brain has a
small-world architecturef5g.

A simple model for brain functioning that presents a self-
organized state was introduced in Ref.f7g. In this paper, we
discuss the model in Ref.f7g based on small-world networks.
Our aim is to investigate the influence of network topology
on dynamical behaviors. The network topology is completely
regular in Ref.f7g, while our network topology has a small-
world structure. We find our model displays power-law be-
havior of avalanche size and generates long-range temporal
correlations and 1/f noise in the activity of neural popula-
tions. More importantly, we find that there are different ava-
lanche dynamical behaviors for different rewiring probability
f, the density of long-range connections in the small-world
networks.

II. THE MODEL

Our model is a one-dimensional andL-node lattice system
based on a small-world network. Each node represents a neu-
ron; a connection between two nodes represents a synapse.
According to the neuron-dynamical picture of the brain, the
dynamics of neurons and synapses can be described as fol-
lows.

The axon, by order of its neuronspresynaptic neurond,
generates a signal with the form of an action potential. The
amplitude of the spike is of the order of tens of millivolts.
The signal is transferred by the synapse to the soma of an-
other neuronspostsynaptic neurond, where the inputs from all
the presynaptic neurons connected to it are summed. On av-
erage each neuron is connected to 103–104 other neurons.
The amplitude of the input signals at the soma is about
1 mV. These inputs may be either excitatory, hence favoring
the likelihood of the appearance of a spike to be transmitted
to its postsynaptic neurons, or inhibitory, reducing the like-
lihood of firing. If the sum of excitatory signals exceeds
some threshold, the probability for the emission of a spike,
which is the manifestation of the instability, becomes signifi-
cant. This threshold is tens of millivolts high, and hence a
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great number of excitatory inputs make the corresponding
neuron unstable, leading to the firing and allowing a spike to
occur. After the release of a spike, the neurons require a
period of time to recover. During the 1–2 ms following the
emission of a spike, no matter how large the excitatory input
may be, the neuron is unable to emit a second spike. This
period is called the absolute refractory period of the neuron.
On the other hand, the brain as a whole is a system capable
of automodificationsf7g.

In our model, we intend to capture the main characteris-
tics of all that was stated above. First, we provide a detailed
description about the construction of small-world networks.
The small-world networks are generated by using the proce-
dure outlined by Watts and Strogatzf5g.

s1d Start with a one-dimensional regular lattice withL
sites. The periodic boundary condition is used in the lattice.
Each lattice site is connected to its 2k nearest neighbors by a
bondsso that forL interacting sites, or neurons, we haveLk
bondsd.

s2d Randomly choose two sites of the lattice and place a
bond between them. Self-connections and duplicate links are
excluded. Then one of the smaller bonds going to a neighbor
site of one of the end points of one long bond is moved.

s3d Repeat step 2 until the number of bonds “rewired” is
the fractionf of all bonds of the original lattice, i.e.,fkL.

Steps 2 and 3 mean that we rewired with probabilityf
one long-range bond for each connection on the original lat-
tice. Two connected sites are indicated as “the nearest neigh-
bor.” The situationf=0 corresponds to the simple regular
lattice and largef corresponds to the random graph.

The dynamical process of our model is defined and simu-
lated as follows.

sad L neurons are distributed on a small-world network.
With each site we associate a random barrierBi, uniformly
distributed between 0 and 1.

sbd At each time step, the lowest barrier is found and the
corresponding neuron is fired by assigning a new random
number between 0 and 1 to the barrier, and by assigning to
all its nearest neighbors new random numbers between 0
and 1.

scd Last, the site that suffers a change in its barrier as a
consequence of firing itself is prohibited from firing again
during a period of timeTr sthe refractory periodd. Its neigh-
bors are free to fire at any moment if they satisfy the condi-
tion of being the lowest. If after a certain time intervalt
,Tr a nearest neighbor is fired, the barrier of the temporarily
“frozen” neuron is also changed but it continues to be pro-
hibited to produce a spike until a timet.Tr has elapsed.

In our model we do not attempt to give a detailed descrip-
tion of the elements of the brain. Instead, we represent each
neuron with a barriersa real number between 0 and 1d that
characterizes its instantaneous probability of releasing a
spike, which is the measure of the instability of the neuron.
The barrier height of a given neuron separates its current
state scharacterized by its local probability of firingd from
other more stable states. Low-barrier neurons are easy to fire
and high-barrier neurons are difficult to firef7g. When a
neuron fires, it changes the instability of the nearest neigh-
bors. A neuron with a low probability of firingshigh barrierd
has a high chance to fire in subsequent time steps by a firing

coming from a related neuron, causing a reduction of the
barrier. An inhibitory stimulus of a related neuron could
cause an increase in the barrier height, retarding any possible
firing action. The modification of the barrier can be thought
of as either the result of the release of a spike by its own
neuron or the consequence of a received signal that changes
the stability of the neuron. At the end of this paper we will
also find that the system we are modeling is not only self-
organized but also critical.

III. SIMULATION RESULTS

Here we use a system of the sizeL=1000 withk=2. This
means that the ranges of interactions go beyond the first-
neighbor barriers. Then we changef; our aim is to investi-
gate avalanche dynamical behaviors for differentf.

If we begin the system with an arbitrary distribution of
barrier heights, subsequent firing activities would be com-
pletely uncorrelated but, as time goes on, it would become
more and more likely that the nearest neighbors are next to
fire srespecting the constraint of the refractory periodd. After
a transient, the system reaches a highly correlated stationary
state. All the minimum barriersBistd are less than what is
called the “self-organized threshold”Bc in Ref. f7g. A self-
organized threshold also exists in our model. From Fig. 1, for
a certainf, we can see that the distribution of the lower
barriers in the critical state vanishes at and above the corre-
spondingBcsfd. We call the “self-organized threshold” for a
certainf in our modelBcsfd. We find thatBcsfd decreases
with the increment off. It can be explained that with the
increment off, the number of long-range connectionssfkLd
increases and the number of links of some particular sites
exceeds 4. In this case, the scopes of the particular sites,
which connect the nearest neighbors, enlarge. Thus the
ranges of the particular sites’ local interaction are extended
and the signal of the fired neuron can be transmitted more
easily to farther and more neurons. This can increase the
speed of the collective dynamics and cause a reduction in the
barrier height. For a certainf, when refractory periods are
greater than 1, the thresholdBcsfd remains at the same val-
ues but the barrier distribution becomes less abrupt.

The study of the avalanche is crucial for investigating the
critical features of complex systems. Similar to those used in

FIG. 1. The distribution of the minimum barriersBmin with dif-
ferent f. The system size used isL=1000,k=2, and the absolute
refractory periodTr =1.
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Refs.f8g andf9g, for a certainf, we present the definition of
the B0sfd avalanche, whereB0sfd f0,B0sfd,Bcsfdg is an
auxiliary parameter used to define the avalanche. Suppose
that at times, the smallest random number in the system is
larger thanB0sfd. According to the rules of the model, if, at
time steps+1, the lowest of the new random numbers se-
lected is less thanB0sfd, a B0sfd avalanche begins. The
avalanche continues to run if the lowest random barrier
whose corresponding neuron can be fired is less thanB0sfd.
The avalanche stops, say at times+S, when the lowest num-
ber is larger thanB0sfd for the first time. TheB0sfd ava-
lanche size is defined as the duration of the avalancheS.

In Fig. 2, we draw the probability distributionPsSd of
B0sfd avalanches of sizeS for L=1000, k=2, and Tr =1
whenf=0.01 and 0.1, respectively. We find thatB0sfd ava-
lanche distributions obey power-law behaviorPsSd~S−tsfd in
our model. With the increment off, the exponenttsfd in-
creases. This phenomenon may be caused by the increasing
of randomness in our model.

At the same time, in Fig. 3, we demonstrate the depen-
dence of the exponentt for theB0sfd avalanche distribution
on the refractory periodTr for the system withL=1000,k
=2, f=0.01, andB0sfd=0.40. AsTr increases, the exponent
t increases. Different refractory periods and consequently
different exponents in the distribution for avalanches could

characterize different time scale features of the brain: short,
rapidly adaptive onessas, for example, breath controld and
slower long-term onesssay, for example, languaged f7g.

In the critical state, each barrier suffers bursts of activity
alternating with long periods of calm. One way to character-
ize this intermittency is observing the activity of a single
barrier. In Fig. 4, we present the temporal dependence of the
value of a single barrier at the maximally connected site for
f=0 and 0.01, respectively, during a time interval when the
system is at the critical state. They both exhibit “punctuated
equilibrium” behaviors. But we find a drastic reduction in the
periods of calm from the order topology to the small-world
networks. With the increment off, the number of links of
the maximally connected site increases. The range of local
interaction at the maximally connected site enlarges, and
then there are more chances to change its stability by chang-
ing its barrier value. So the periods of calm in Fig. 4sbd
become shorter and the density of black points becomes
greater than that in Fig. 4sad. The model exhibits “intermit-
tent dynamics” which resemble the measured results of the
firing response of a single neuron in a monkey visual cortex
f10g.

We investigate the temporal correlation between the mini-
mum barriers and focus on two quantities: the probability
distribution of first return times and distribution of all return
times. Define the sizet of the first return time as the number
of consecutive time steps during which the observed barrier
remains constant. Note that this characterization allows for
an easier comparison with experiments; the magnitudes more
often measured in experiments with actual neurons are the
interspike time periodssin our vocabulary, first return timesd.
In Fig. 5, we show the probability distribution of first return
times when the system is at the critical state forf=0.01; the
calculation was done above forL=1000, k=2, andTr =1.
The distribution satisfies power-law behaviorPstd~ t−tf with

FIG. 2. Distribution of theB0sfd avalanche temporal sizes with
system L=1000, k=2 and absolute refractory periodTr =1: f
= sad 0.01; sbd 0.1.

FIG. 3. Dependence of the exponentt of the power law in Fig.
2sad as a function of the refractory periodTr.

FIG. 4. Temporal dependence of the value of a barrier at the
maximally connected site forf= sad 0 and sbd 0.01 for L=1000,
k=2, andTr =1, when the system is at the self-organized critical
state.
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exponentt f <1.36. The exponent for the first return time
probability distribution is different from the one for the regu-
lar model withk=1, Tr =1 st f =1.60±0.04d f7g or the regular
model withk=2, Tr =1 st f =1.54±0.04d. But with the incre-
ment off the probability distributions of first return times do
not obey a power law. The same plot forf=1 is shown in the
inset of Fig. 5 and we can see that the plot does not display
the power-law behavior. Our result here is different from that
in the random neighborsRNd model f11g. It may be caused
by the different randomness. The randomness in the RN
model is in fact a kind of “annealed” randomnessf11g, but
the randomness in our model is “quenched,” that is, the spa-
tial structure of the network is fixed. In fact, Papa and da
Silva have found not only power-law but also non-power-law
types of distribution by analyzing experimental data of real
interspike measurements in the visual cortex of macaques
f12g.

Another quantity is the distribution of all return times
distribution Cstd. We define the sizet of all return times as
the number of time steps, that is, if a given neuron firesswith
the minimum barrierd at stept0, it will fire at t0+ t regardless
of what happens at intermediate steps. The distribution of all
return times in Fig. 6 also decays slowly via a power law
Cstd~ t−g, g,0.58. SinceCstd is the autocorrelation function
of the activity, the power spectrum is very simplef9g. Ac-
cording to the Wiener-Khinchin theoremf13g, Ssfd is the
Fourier transform of thesautodcorrelation function:

Ssfd =E
−`

+`

Cstde2pi f tdt. s1d

We measure the power spectrumSsfd of Cstd for L=1000,
k=2, Tr =1, andf=0.01 as shown in Fig. 7. The exponenta
in the power spectrumSsfd~1/ fa is a,0.55. So it can be
categorized as 1/f type noise. Therefore, the system exhibits
self-organized criticality. 1 /f noise is the characteristic sig-
nature of fluctuation on many time scales. It has been ob-
served in the pulse trains of nerve cells belonging to various

brain structures, such as the auditory nerve and the mesen-
cephalic reticular formationf14g.

IV. CONCLUSION

In this paper, we provide a one-dimensional lattice system
with small-world structure to investigate scale invariance in
the activity of neural populations. From a neuron-biological
view, the network structure of our model is closer to the fact
than that in Ref.f7g. In the process of simulation, our model
displays power-law behavior of avalanche size and two long-
range temporal correlations for first return times and all re-
turn times and 1/f noise. At the same time, we find that there
are different avalanche dynamical behaviors for different to-
pologies of the network. However, our model is very simple
for brain functioning and neglects the details of the elements
in the brain. We have only simulated the simplest character-
istic of the neuron. Models for more complex neural behav-
iors should be tested and developed in future research.
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FIG. 5. The probability distribution of first return times for sys-
tem sizeL=1000,k=2, f=0.01, and the absolute refractory period
Tr =1.

FIG. 6. Distribution of all return times for system sizeL
=1000,k=2, f=0.01, and the absolute refractory periodTr =1.

FIG. 7. Power spectrum for system sizeL=1000, k=2, f
=0.01, and the absolute refractory periodTr =1.

M. LIN AND T. CHEN PHYSICAL REVIEW E 71, 016133s2005d

016133-4



f1g P. Bak, C. Tang, and K. Wiesenfeld, Phys. Rev. Lett.59, 381
s1987d.

f2g T. Gisiger, Biol. Rev. Cambridge Philos. Soc.76, 161 s2001d.
f3g P. Bak, How Nature Works: The Science of Self-Organized

Criticality sSpringer-Verlag, New York, 1996d.
f4g J. W. Bohland and A. A. Minai, Neurocomputing38–40, 489

s2001d.
f5g D. J. Watts and S. H. Strogatz, NaturesLondond 393, 440

s1998d.
f6g C. M. Gray, P. König, A. K. Engel, and W. Singer, Nature

sLondond 338, 334 s1989d.
f7g L. da Silvaet al., Phys. Lett. A 242, 343 s1998d.

f8g P. Bak and K. Sneppen, Phys. Rev. Lett.71, 4083s1993d.
f9g M. Paczuski, S. Maslov, and P. Bak, Phys. Rev. E53, 414

s1996d.
f10g C. Koch, NaturesLondond 385, 207 s1997d.
f11g J. de Boer, A. D. Jackson, and T. Wettig, Phys. Rev. E51,

1059 s1995d.
f12g A. R. R. Papa and L. da Silva, Theory Biosci.116, 317s1997d.
f13g L. D. Landau and E. M. Lifshitz,Statistical Physics, Course of

Theoretical Physics Vol. 9sPergamon, Oxford, 1980d.
f14g M. Usher, M. Stemmler, and Z. Olami, Phys. Rev. Lett.74,

326 s1995d.

SELF-ORGANIZED CRITICALITY IN A SIMPLE… PHYSICAL REVIEW E 71, 016133s2005d

016133-5


