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Self-organized criticality in a simple model of neurons based on small-world networks
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A simple model for a set of interacting idealized neurons with small-world structure is introduced. The basic
elements of the model are endowed with the main features of a neuron function. We find that our model
displays power-law behavior of avalanche sizes and generates long-range temporal correlatiofishaiss 1/
More importantly, we find there are different avalanche dynamical behaviors for difféxethie density of
short paths in the network.
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[. INTRODUCTION chronization of widely separated neurons in the cat visual
. ) cortex[6]. Watts and Strogatz proposed that the brain has a
In 1987, Bak, Tang, and Wiesenfeld introduced the consmall-world architecturgs).
cept of “self-organized criticalitytSOQ [1]. It is shown that A simple model for brain functioning that presents a self-
extended nonequilibrium systems can organize into a SC&'%‘rganized state was introduced in Rigf]. In this paper, we
invariant critical state spontaneously, without fine tuning of agjscuss the model in Ref7] based on small-world networks.
control parameter. This critical state is characterized by gyyr aim is to investigate the influence of network topology
power-llaw dis_tribution of avalanche sizes, which is regardeg,, dynamical behaviors. The network topology is completely
as a “fingerprint” for SOC. ~ regular in Ref[7], while our network topology has a small-
The brain, which possesses about®a0" neurons, is  yorld structure. We find our model displays power-law be-
one of the most complex systems. Now evidence for somgayior of avalanche size and generates long-range temporal
aspects of scale invariance has been found in the centrghrrelations and 1f/ noise in the activity of neural popula-
nervous systenj2]. Some scientists stated that the braintons. More importantly, we find that there are different ava-
might be operating at, or near, a critical stg8& The mecha-  |anche dynamical behaviors for different rewiring probability

nism of the SOC process in the brain is an interesting rez the density of long-range connections in the small-world
search area. networks.

It is well known that network connectivity in the cortex
and other brain regions is mainly local, with relatively sparse
long-distance projections. From a neuron-biological point of Il. THE MODEL

view, unlike for fully connected artificial neural networks, . odelis a one-dimensional ahehode lattice system
plausible associative memories must have sparse connectlgésed on a small-world network. Each node represents a neu-

ity, reflecting the situation in the cortex and hippocampus,,. 5 connection between two nodes represents a synapse.
[4]. Recently, Watts and Strogalta] studied a class of net-  a¢cording to the neuron-dynamical picture of the brain, the

work_s that can be tuned from regular to random states b¥1ynamics of neurons and synapses can be described as fol-
varying a single parameter. They called this class of net;

= . ows.
\r/]vlorhkls sl,mall-wo?rllqk networkls. ?mgll-worldhnetworks Cﬁm rt:e The axon, by order of its neurofpresynaptic neurgn
'9 yc_usterhel o ehal_rkegu ard attice, y?}t ?I‘_\;]e ?(smal N ?r' enerates a signal with the form of an action potential. The
acteristic path length, like random graphs. The key role of &, jiv,de of the spike is of the order of tens of millivolts.
few long-range connectiongshortcut$ in the small-world

. . The signal is transferred by the synapse to the soma of an-
network is to decrease the length of the characteristic path'_Bther neuroripostsynaptic neuronwhere the inputs from all

suggests that small-world phenomena might be common i e presynaptic neurons connected to it are summed. On av-

sparse networks with many nodes. Indeed, it has been Provellage each neuron is connected t6-100* other neurons
tr;]at the nerl;/ouslsystem of ;Qe gemlalltodeldw@melegansf The amplitude of the input signals at the soma is about
shows small-wor .propertle[ - mall-world networks of 1 1y Thege inputs may be either excitatory, hence favoring
coupled phase oscillators are optimal for producing synchrog,q jikelihood of the appearance of a spike to be transmitted
nization. The results may be relevant to the observed SYNo its postsynaptic neurons, or inhibitory, reducing the like-
lihood of firing. If the sum of excitatory signals exceeds
some threshold, the probability for the emission of a spike,
*Electronic address: linminmin@eyou.com which is the manifestation of the instability, becomes signifi-
"Electronic address: chenzh@nankai.edu.cn cant. This threshold is tens of millivolts high, and hence a
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great number of excitatory inputs make the corresponding 0.06 -

neuron unstable, leading to the firing and allowing a spike to ; *°*¢:0'01
: : 0.05 —-—¢=0.5

occur. After the release of a spike, the neurons require a =

period of time to recover. During the 1-2 ms following the 0.04] %

emission of a spike, no matter how large the excitatory input T
may be, the neuron is unable to emit a second spike. This E 003
period is called the absolute refractory period of the neuron. g;

0.02

On the other hand, the brain as a whole is a system capable
of automodification$7].

In our model, we intend to capture the main characteris-
tics of all that was stated above. First, we provide a detailed 0.0
description about the construction of small-world networks. :
The small-world networks are generated by using the proce-

dure outlined by Watts and Strogg]. FIG. 1. The distribution of the minimum barrieBs,, with dif-

. (1) Start With a one-dimensiona_l re_gular 'aF“CG Wth_ ferent ¢. The system size used is=1000,k=2, and the absolute
sites. The periodic boundary condition is used in the Iattlcerefr(_lCtory periodT, =1
=1.

Each lattice site is connected to itk Bearest neighbors by a
bond (so that forL interacting sites, or neurons, we havie , i i
bonds. coming from a r_elated neuron, causing a reduction of the

(2) Randomly choose two sites of the lattice and place parrier. An |nh|b|t0_ry stlmulu_s of a related neuron couI(_JI
bond between them. Self-connections and duplicate links arg?Use an increase in the barrier height, retarding any possible
excluded. Then one of the smaller bonds going to a neighbdf"ing action. The modification of the barrier can be thought
site of one of the end points of one long bond is moved. of as either the result of the release_ of a §p|ke by its own

(3) Repeat step 2 until the number of bonds “rewired” isNeuron or the consequence of a received s_lgnal that changes
the fraction¢ of all bonds of the original lattice, i.e¢kL. the stability of the neuron. At the end of this paper we will

Steps 2 and 3 mean that we rewired with probabitity also f!nd that the sys_t(_em we are modeling is not only self-
one long-range bond for each connection on the original latorganized but also critical.
tice. Two cqnnepted sites are indicated as “thg nearest neigh- IIl. SIMULATION RESULTS
bor.” The situationy=0 corresponds to the simple regular
lattice and largep corresponds to the random graph. Here we use a system of the size 1000 withk=2. This

The dynamical process of our model is defined and simutMeans that the ranges of interactions go beyond the first-
lated as follows. neighbor barriers. Then we change our aim is to investi-

(a) L neurons are distributed on a small-world network. 9ate avalanche dynamical behaviors for different
With each site we associate a random barBgruniformly If we begin the system with an arbitrary distribution of
distributed between 0 and 1. barrier heights, subsequent firing activities would be com-

(b) At each time step, the lowest barrier is found and thePletely uncorrelated but, as time goes on, it would become
Corresponding neuron iS fired by assigning a new randormore and more I|ke|y that the nearest neighbors are next to
number between 0 and 1 to the barrier, and by assigning tire (respecting the constraint of the refractory peyidifter
all its nearest neighbors new random numbers between @ transient, the system reaches a highly correlated stationary
and 1. state. All the minimum barrier8;(t) are less than what is

(c) Last, the site that suffers a change in its barrier as &alled the “self-organized threshol®; in Ref.[7]. A self-
consequence of firing itself is prohibited from firing again organized threshold also exists in our model. From Fig. 1, for
during a period of timeT, (the refractory period Its neigh- @ certaing, we can see that the distribution of the lower
bors are free to fire at any moment if they satisfy the condibarriers in the critical state vanishes at and above the corre-
tion of being the lowest. If after a certain time interval SpondingB.(¢). We call the “self-organized threshold” for a
<T, a nearest neighbor is fired, the barrier of the temporarilycertain ¢ in our modelB(#). We find thatB.(¢) decreases
“frozen” neuron is also changed but it continues to be prowith the increment of¢é. It can be explained that with the
hibited to produce a spike until a time-T, has elapsed. increment of¢, the number of long-range connectidiaskL)

In our model we do not attempt to give a detailed descripincreases and the number of links of some particular sites
tion of the elements of the brain. Instead, we represent eagtXceeds 4. In this case, the scopes of the particular sites,
neuron with a barriefa real number between 0 anglthat  which connect the nearest neighbors, enlarge. Thus the
characterizes its instantaneous probability of releasing sanges of the particular sites’ local interaction are extended
spike, which is the measure of the instability of the neuronand the signal of the fired neuron can be transmitted more
The barrier height of a given neuron separates its currergasily to farther and more neurons. This can increase the
state (characterized by its local probability of firingrom  speed of the collective dynamics and cause a reduction in the
other more stable states. Low-barrier neurons are easy to fitwarrier height. For a certaih, when refractory periods are
and high-barrier neurons are difficult to fif&]. When a  greater than 1, the threshoB}(¢) remains at the same val-
neuron fires, it changes the instability of the nearest neighues but the barrier distribution becomes less abrupt.
bors. A neuron with a low probability of firin¢high barriej The study of the avalanche is crucial for investigating the
has a high chance to fire in subsequent time steps by a firingritical features of complex systems. Similar to those used in

0.01
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Refs.[8] and[9], for a certaing, we present the definition of 00 2.0x10* 4.0x10* 6.0x10* 8.0x10* 1.0x10°
the By(¢) avalanche, wherBy(¢) [0<By(¢p) <B(¢)] is an () time

auxiliary parameter used to define the avalanche. Suppose

that at times, the smallest random number in the system ismaximally connected site fap= (a) 0 and(b) 0.01 for L=1000

If':lrger thanBy(¢). According to the rules of the model, if, at k=2, andT,=1, when the system is at the self-organized critical

time steps+1, the lowest of the new random numbers se-g4te.

lected is less thamBy(¢), a By(¢) avalanche begins. The

avalanche continues to run if the lowest random barriecharacterize different time scale features of the brain: short,

whose corresponding neuron can be fired is less Byap).  rapidly adaptive onegas, for example, breath contyaind

The avalanche stops, say at tiseS, when the lowest num-  Slower long-term onegsay, for example, languapgr].

ber is larger tharBo(¢) for the first time. TheBy(¢) ava- In the critical state, each barrier suffers bursts of activity

lanche size is defined as the duration of the avalache  altérnating with long periods of calm. One way to character-
In Fig. 2, we draw the probability distributioR(S) of ize this intermittency is observing the activity of a single

Bo(¢) avala’nches of sizeS for L=1000 k=2 andT.=1 barrier.In Fig. 4, we present the temporal dependence of the

= k=2, =

when $=0.01 and 0.1, respectively. We find tHag(4) ava- value of a single barrie.r at the maxima}IIy c_onnected site for
lanche distributions ot;ey power-law behavRiS) = S %) in ¢=0 and 0.01, respectively, during a time interval when the
. . . system is at the critical state. They both exhibit “punctuated
our model. \.N'th the increment a, the exponenb—(gb). N equilibrium” behaviors. But we find a drastic reduction in the
creases. This phenomenon may be caused by the increasiggi,qs of calm from the order topology to the small-world
of randomness n our_model. networks. With the increment ap, the number of links of
At the same time, in Fig. 3, we demonstrate_z th_e d_epenfhe maximally connected site increases. The range of local
dence of the exponentfor the By(¢) avalanche distribution jyteraction at the maximally connected site enlarges, and

on the refractory period, for the system withL.=1000,k  then there are more chances to change its stability by chang-
=2, $=0.01, andBy(¢)=0.40. AsT, increases, the exponent g its barrier value. So the periods of calm in Fighy
7 increases. Different refractory periods and consequentlyacome shorter and the density of black points becomes
different exponents in the distribution for avalanches C°U|dgreater than that in Fig.(4). The model exhibits “intermit-

tent dynamics” which resemble the measured results of the

FIG. 4. Temporal dependence of the value of a barrier at the

13 d firing response of a single neuron in a monkey visual cortex
1.2 . [10].
. We investigate the temporal correlation between the mini-
1.1 . mum barriers and focus on two quantities: the probability
=10 . distribution of first return times and distribution of all return
= . times. Define the sizeof the first return time as the number
© 09 ° L=1000 of consecutive time steps during which the observed barrier
' . k=2 remains constant. Note that this characterization allows for
0.8 $=0.01 an easier comparison with experiments; the magnitudes more
. B,(¢)=0.40 often measured in experiments with actual neurons are the
0.7 5 2 6 8 10 interspike time periodén our vocabulary, first return timgs
Absolute Refractory Time Tr In Fig. 5, we show the probability distribution of first return

times when the system is at the critical stateder0.01; the
FIG. 3. Dependence of the exponentf the power law in Fig.  calculation was done above far=1000,k=2, andT,=1.
2(a) as a function of the refractory peridi. The distribution satisfies power-law behavit) «t~" with
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FIG. 5. The probability distribution of first return times for sys-

tem sizel =1000,k=2, ¢=0.01, and the absolute refractory period _ F!G. 6. Distribution of all retumn times for system side
T.=1. =1000,k=2, ¢=0.01, and the absolute refractory peribg1.

brain structures, such as the auditory nerve and the mesen-
exponentr~1.36. The exponent for the first return time cephalic reticular formatiof14].
probability distribution is different from the one for the regu-
lar model withk=1, T,=1 (7y=1.60+0.04 [7] or the regular IV. CONCLUSION
model withk=2, T,=1 (7;=1.54+0.04. But with the incre- In this paper, we provide a one-dimensional lattice system
ment of ¢ the probability distributions of first return times do with small-world structure to investigate scale invariance in
not obey a power law. The same plot i 1 is shown in the  the activity of neural populations. From a neuron-biological
inset of Fig. 5 and we can see that the plot does not displayiew, the petwork structure of our modlel is c!oser to the fact
the power-law behavior. Our result here is different from thatthan that in Ref[7]. In the process of simulation, our model
in the random neighbo{RN) model[11]. It may be caused displays power-law behavior of avalanche size and two long-

by the different randomness. The randomness in the RN@N9€ temporal correlations for first return times and all re-
model is in fact a kind of “annealed” randomnddd], but turn times and 1f noise. At the same time, we find that there

the randomness in our model is “quenched,” that is, the sp:f—‘re different avalanche dynamical behaviors for different to-
' ' pologies of the network. However, our model is very simple

tal structure of the network is fixed. In fact, Papa and dafor brain functioning and neglects the details of the elements
Silva have found not only power-law but also non-power-law:. g 9

tvoes of distribution by analvzing experimental data of realm the brain. We have only simulated the simplest character-
types o y analyzing exp istic of the neuron. Models for more complex neural behav-
interspike measurements in the visual cortex of macaqu

[12] &%rs should be tested and developed in future research.
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return times in Fig. 6 also decays slowly via a power law
C(t)ct™”, y~0.58. SinceC(t) is the autocorrelation function
of the activity, the power spectrum is very simp@. Ac-
cording to the Wiener-Khinchin theorefii3], S(f) is the
Fourier transform of théautgcorrelation function:

S(f)

S(f):J wC(t)eZ’T”tdt. (1)

We measure the power spectrus(f) of C(t) for L=1000,
k=2,T,=1, and¢$=0.01 as shown in Fig. 7. The exponent

in the power spectrun®(f)«1/f* is «~0.55. So it can be
categorized as X/type noise. Therefore, the system exhibits
self-organized criticality. 1f/ noise is the characteristic sig-
nature of fluctuation on many time scales. It has been ob- FIG. 7. Power spectrum for system site=1000, k=2, ¢
served in the pulse trains of nerve cells belonging to various:0.01, and the absolute refractory peribg=1.
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